Label-free monitoring of tissue biochemistry following traumatic brain injury using Raman spectroscopy.

نویسندگان

  • Jakub Maciej Surmacki
  • Laura Ansel-Bollepalli
  • Francesca Pischiutta
  • Elisa R Zanier
  • Ari Ercole
  • Sarah Elizabeth Bohndiek
چکیده

Traumatic brain injury (TBI) constitutes a major cause of death and long-term disability. At present, we lack methods to non-invasively track tissue biochemistry and hence select appropriate interventions for patients. We hypothesized that detailed label-free vibrational chemical analysis of focal TBI could provide such information. We assessed the early spatial and temporal changes in tissue biochemistry that are associated with brain injury in mice. Numerous differences were observed in the spectra of the contusion core and pericontusional tissue between 2 and 7 days. For example, a strong signal from haem was seen in the contusion core at 2 days due to haemorrhage, which subsequently resolved. More importantly, elevated cholesterol levels were demonstrated by 7 days, which may be a marker of important cell repair processes. Principal component analysis revealed an early 'acute' component dominated by haemorrhage and a delayed component reflecting changes in protein and lipid composition. Notably we demonstrated changes in Raman signature with time even in the contralateral hemisphere when compared to sham control mice. Raman spectroscopy therefore shows promise as a probe that is sensitive to important pathobiological processes in TBI and could be applied in future both in the experimental setting, as well as in the clinic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Magnetic Resonance Spectroscopy in Neurocognitive Assessment After Head Injury: A Systematic Review

Background: Traumatic brain injury is believed to be a public health disorder with some complications. Post Traumatic Neurocognitive Disorders (PTND) received much attention among these complications because of the high prevalence of mild traumatic brain injuries. On the other hand, advanced neuroimaging is increasingly becoming an exciting modality in the field of traumatic brain injury. Magne...

متن کامل

Therapeutic effects of ellagic acid on memory, hippocampus electrophysiology deficits, and elevated TNF-α level in brain due to experimental traumatic brain injury

Objective(s): Cognitive defects such as learning and memory impairment are amongst the most repetitious sequelae after sever and moderate traumatic brain injury (TBI). It was suggested that ellagic acid (EA), an innate phenol product, display neuroprotective properties against oxidative and inflammatory damages after brain injury. The object of the current study was therapeutic properties of EA...

متن کامل

P 76: Assay of Alterations of Cytokines to Remedy of Traumatic Brain Injury

Traumatic brain injury (TBI) is a global health concern that typically causes emotional disturbances and cognitive dysfunction. It elicits a complex secondary injury response, with neuroinflammation as a crucial central component. Secondary pathologies following TBI may be associated with chronic neurodegenerative disorders and an enhanced likelihood of developing dementia-like disease in later...

متن کامل

Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury

Objective(s):Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis) in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI) results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines...

متن کامل

O 26: Treatment of Traumatic Brain Injury in Adult Rats with Injection of Human Epileptic Neural Stem Cells and Nano-Scaffold

Traumatic brain injury (TBI) is described by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The use of human stem cells and self-assembling peptide scaffolds suggest huge potential for application in the treatment of TBI. In the present study, we surveyed the beneficial effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Analyst

دوره 142 1  شماره 

صفحات  -

تاریخ انتشار 2016